
IISSSSUUEE 0077 NNOOVV 22001122

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hh tt tt pp :: // // ww ww ww .. tt hh ee mm aa gg pp ii .. cc oo mm

Raspberry Pi is a trademark of The Raspberry Pi Foundation.
This magazine was created using a Raspberry Pi computer.

TThhiiss IIssssuuee..

•• IInntteerruuppttss
•• SSoollaarr PPii
•• TTuurrbboo MMooddee
•• PPii EEvvoolluutt iioonn
•• CC++++

PPlluuss..
•• AAnn iinntteerrvv iieeww wwii tthh tthhee
RRaassppbbiiaann ddeevveellooppeerrss
•• MMaakkee yyoouurr oowwnn llaaddddeerr
ggaammee uussiinngg PPCCBBss
•• TThhee bbaassiiccss ooff GGNNUU mmaakkee

AArrdduuiinnoo AAnndd
RRaassPPii GGeett

CCoonnnneecctteedd!!

AA cchhaannccee ttoo
wwiinn aa PPIINNKK
RRaassPPii CCaassee!!

Support us even more
by buying the printed
copy of this mag!

Welcome to Issue 7,

The Raspberry Pi and Arduino are a perfect match for real time applications

where a bit more CPU power is needed for control. Coupling the two devices

together opens up the possibility to use a wealth of Arduino shields too. We look

forward to seeing some really interesting projects in the future.

There is an interview from the lead developer of Raspbian (Debian build for the

Raspberry Pi), competitions and a selection of programming articles to get your

teeth into.

If you would prefer to receive your copy of The MagPi in printed form, visit

http://www.modmypi.com and place your order now!

Ash Stone, Chief Editor of The MagPi

Ash Stone
Chief Editor /Administrator

Jason 'Jaseman' Davies
Writer /Website /Page Designs

Tim 'Meltwater' Cox
Writer /Photographer /Page Designs

Chris 'tzj' Stagg
Writer /Photographer /Page Designs

Ian McAlpine
Page Designs /Graphics /Writer

Joshua Marinacci
Page Designs /Graphics

Lix
Page Designs /Graphics

PaisleyBoy
Page Designs /Graphics

Sam Marshall
Page Designs /Graphics

Aaron Shaw
Page Designs /Graphics

Nick
Page Designs /Graphics

Matt '0the0judge0'
Administrator /Website

Matthew Timmons-Brown
Writer

Gordon Henderson
Writer

Colin Deady
Writer /Page Designs

Stewart C. Russell
Writer

W.H.Bell
Writer

Colin Norris
Editor /Graphics

Antiloquax
Writer

Richard Ryniker
Writer

Alex Kerr
Writer

2

04 PI AND ARDUINO IN ACTION

Program the Arduino using a Raspberry Pi, by Stewart C. Russel l

07 THIS MONTH'S COMPETITION

Win some excel lent additions to your setup, from PC Supplies Ltd

08 SOLAR PI

When on the move the sun can keep the Pi going, by M eltwater

1 0 GORDON'S LADDER BOARD

Soldering irons at the ready, by Gordon H enderson

1 2 GPIO AND INTERRUPTS

A review of how to handle the GPI O from the command line, by Richard Ryniker

1 6 RASPBIAN, THE STORY SO FAR

An interview with M ike Thompson, the lead developer of Raspbian, by Colin Deady

1 8 TURBO SETTINGS FOR MAXIMUM PERFORMANCE

A review of how to tune up the Pi, by M atthew Timmons-Brown

21 THIS MONTH'S EVENTS LIST

Raspberry J ams and other community events

22 PI-EVOLUTION

A review on the Raspberry Pi 's development, by J aseman

24 THE BASICS OF GNU MAKE

Speeding up code development with GN U M ake, by W. H . Bel l

26 WELCOME TO THE C++ CACHE

Getting to grips with C++, by Alex Kerr

28 THE SCRATCH PATCH

H ave a go at defensive programming, by Anti loquax.

30 THE PYTHON PIT

U sing command line arguments, by Colin Deady

32 FEEDBACK & DISCLAIMER

Contents

3

This example combines output (setting the
brightness of an LED with a graphical sl ider)
with input (reading the temperature from an
LM58).

Required Materials
Raspberry Pi
Arduino
Internet Connection
Small solder-less breadboard
LM35 temperature sensor
(http://www.ti .com/product/lm35)
5 mm red LED
1 20Ω resistor
4× male-male jumper wires (here coloured
red, yel low, blue and black)
Short-ish breadboard jumper (1 7.8 mm or
0.7", here coloured black)

Firmata (http://firmata.org) is a simple serial
protocol that al lows you to read and write I/O
ports on the Arduino from a host computer. I t's
most often used with the graphical
programming language "Processing"
(http://processing.org) but there is support for
other languages.

Installing the Arduino IDE and Firmata

The Arduino IDE is already included in the
Raspbian repositories, so you can instal l i t al l
with:

$ sudo aptget install arduino

I f i t's the first time you've run it, the IDE may
ask you to create a folder for its programs
(cal led “sketches”) .

Next, you'l l have to choose what Arduino
board you're using from the Tools/Board menu
(I 'm using an Uno, but I have also tested this
on an older Duemilanove board).

You'l l also need to choose which serial port to
use from Tools/Serial Port — for an Uno that
would be /dev/ttyACM0, and older boards
tend to use /dev/ttyUSB0.

To instal l the Firmata sketch onto your
Arduino, select Fi le / Examples / Firmata /
StandardFirmata and cl ick the Upload button.

The IDE goes off and compiles your sketch,
and uploads it. I f al l you get is bl inking l ights
and a ‘Done uploading’ message, success! I f
you get any kind of red error messages, then
there's l ikely something up with the connection
or power to the Arduino.

I 'd strongly recommend connecting your
Arduino either through a powered hub or
applying external power, as the Raspberry Pi
is a bit l imited in what it can power over USB.

I f you get stuck try the website
http://www.ladyada.net/learn/arduino/

Installing pyFirmata

pyFirmata is the magic that al lows your
Arduino running Firmata to talk to Python. I t
takes a few more commands to instal l i t:

$ sudo aptget install pythonserial me

rcurial

$ hg clone https://bitbucket.org/tino/p

yfirmata

$ cd pyfirmata

$ sudo python setup.py install

I f this succeeds, you can remove the pyfirmata
folder:

$ cd .. ; sudo rm r pyfirmata

Raspberry Pi & Arduino
While there are many I/O boards under development for the

Raspberry Pi, the Arduino is well established. This article

shows you how talk to an Arduino through Python and the

Firmata protocol.

DIFFICULTY: INTERMEDIATE

4

ARDUINO LM35

+5V +Vs

A0 Vout

GND GND

Building the circuit

Place the parts as shown in the diagram using
the fol lowing tables to assist:

NOTE: I f you accidental ly connect the LM35
the wrong way round, it goes from being a
temperature sensor to being a remarkable
temperature generator — the D-shaped burn
scar on my left index finger reminds me of this
every day…

Running the code
Enter the progam on the next page and save it
as arduino_firmata_ty.py. With your Arduino
plugged in, and the circuit wired up, you run
the program like this:

$ python arduino_firmata_tk.py

I t wi l l take a few seconds for the window to
come up and, once it does, you can control the
LED's brightness with the sl ider on screen.

The LED doesn't seem to get much brighter
above 33%, you'l l notice; there isn't a straight-
l ine l ink between brightness and PWM input
voltage.

I f you touch the LM35, you'l l notice the
temperature reading changing. LM35 sensors
are a bit noisy, so you might notice the
numbers jumping about.

Once you're done, hit the window close
widget, and everything should exit cleanly.

The Python code does three main tasks:

1 . Set up serial communications and configure
the Arduino's I/O pins.

Two important detai ls we have to do here is
set up an iterator thread to stop the Raspberry
Pi 's serial buffer overflowing while it receives
data from the Arduino, and also to wait for the
Arduino to start sending real data before we
move on to the main program.

2. Define three functions to be called by the
GUI:

get_temp() — this reads the value from
Arduino pin A0, converts it to °C, and updates
the label at the bottom of the window.

I f you're famil iar with Arduino, pyFirmata
returns analogue values between 0.0 and 1 .0
instead of the integer range 0-1 023.

This routine ends by asking the main Tk
process to reschedule itself after half a second
(500 ms), and that way we keep updating the
temperature display separate from the main
loop.

Continuedover page...

ARDUINO LED

D3 Anode (Long Wire)

GND

Cathode (Short Wire)

(Going Through the

1 20Ω resistor)

5

set_brightness() — this converts the 0-1 00
value from the GUI 's Scale sl ider widget to a
0.0-1 .0 floating point range, and writes it to pin
D3.

cleanup() — all this routine does is turn the
LED off, and tries to shut down the program
neatly. I t doesn't always quite manage to do
this, however; sometimes you have to hit Ctrl-
C in the terminal window too.

3. Set up the Tkinter GUI. Tk (and its Python
version, Tkinter) is quite an old GUI system,
but is also quite simple to use.

I t rel ies on each widget (or graphical control)
to run a callback routine or set a variable's
value as it is cl icked or changed.

So here, I 'm setting up a 400 pixel wide Scale
sl ider that cal ls the routine set_brightness()
with the current value of the sl ider as it
changes.

Moved ful ly to the right, the sl ide would cal l
set_brightness(1 00), turning the LED ful ly on.

Since the window is so simple – just one Scale
widget and a label — I'm using Tk's crude
pack() method to arrange items in the window.

I t first draws the items, then packs them
together, Tetris-l ike, into the window frame.

Once it's done that, i t schedules the first
temperature reading (which schedules the
next, and so on), then final ly sits in the Tk
mainloop() for the rest of the program,
responding to your input.

Further directions

This is a very simple example of control l ing an
Arduino from Python.

While Firmata can control more complex
outputs such as servos, it does take over the
whole logic processing of the Arduino board.

Any sensor that requires complex setup or
real-time control isn't going to work so well .

That aside, you've now got al l the power of the
Raspberry Pi hooked up to the simple
robustness of the Arduino; the sky's not even
the l imit!

Article byStewart C. Russell
Stewart C. Russel l l ives in Toronto, where he engineers

wind farms and solar power plants. When he's not

lurking in the world's sunny/windy places, he's at home

on amateur radio (cal l sign VA3PID), playing banjo,

fiddl ing with computers, or avoiding gardening. His

website is http://scruss.com/blog

import pyfirmata

from Tkinter import *

Create a new board object,

specifying serial port;

could be /dev/ttyUSB0 for older

Arduinos

board = pyfirmata.Arduino('/dev/ttyACM0')

start an iterator thread so

serial buffer doesn't overflow

iter8 = pyfirmata.util.Iterator(board)

iter8.start()

set up pins

A0 Input (LM35)

pin0 = board.get_pin('a:0:i')

D3 PWM Output (LED)

pin3 = board.get_pin('d:3:p')

IMPORTANT! discard first reads

until A0 gets something valid

while pin0.read() is None:

pass

def get_temp():

LM35 reading in deg C to label

label_text = "Temp: %6.1f C" % (

pin0.read() * 5 * 100)

label.config(text = label_text)

reschedule after half second

root.after(500, get_temp)

def set_brightness(x):

set LED

Scale widget returns 0 .. 100

pyfirmata expects 0 .. 1.0

pin3.write(float(x) / 100.0)

def cleanup():

clean up on exit

and turn LED back off

pin3.write(0)

board.exit()

set up GUI

root = Tk()

ensure cleanup() is called on exit

root.wm_protocol("WM_DELETE_WINDOW",cleanup)

draw a big slider for LED brightness

scale = Scale(root,

command = set_brightness,

orient = HORIZONTAL,

length = 400,

label = 'Brightness')

scale.pack(anchor = CENTER)

place label up against scale widget

label = Label(root)

label.pack(anchor = 'nw')

start temperature read loop

root.after(500, get_temp)

run Tk event loop

root.mainloop()

6

To see the large range of PCSL brand Raspberry Pi accessories visit

http://www.pcslshop.com

Last Month's Winners!
The 5 winners of the PCSL Limited Edition LCD mount are Mike Bradbury (Manchester,

UK), David Corne (Birmingham, UK), Brian Bowman (Chelmsford, UK), Bart

Sekulski (Bristol, UK) and William Green (Doncaster, UK).

Congratulations. We wil l be email ing you soon with detai ls of how to claim all of those

fantastic goodies!

This month there wil l be FIVE prizes!

Each winner wil l receive a Raspberry

Colour Case by PCSL. Suitable for both

Model A and Model B with GPIO cable

access and LED light pipes.

For a chance to take part in this month's

competition visit:

http://www.pcslshop.com/info/magpi

Closing date is 20th November 201 2.

Winners wil l be notified in next month's

magazine and by email . Good luck!

Once again The MagPi and PC Supplies Limited are proud to announce yet
another chance to win some fantastic R-Pi goodies!

NOVEMBER COMPETITION

7

Unit Operation:
This solar device essential ly acts as a solar
charger for the 4xAA batteries placed inside,
which in turn are able to supply power to the
Raspberry Pi itself. The device also serves as
a neat holder for the raspberry pi and as a
bonus it can also be used to recharge most
USB powered devices.

1 . The sun shines on the solar panel.

2. Avai lable power is used to charge the
battery pack (just insert your own standard
4xAAs NiCad/NiMh of your required
capacity) .

3. The battery pack stores the energy and
seamlessly provides power even when
there is l i ttle or no sun.

4. The Raspberry Pi is powered!

A. The micro USB power lead plugs directly
into the Raspberry Pi (neatly fitted upside-
down into the base of the unit) .

B. The ful l size USB plug can be used to
directly power the Raspberry Pi, and if the
batteries are flat add some extra charge
(charging via the sun is required to ful ly
charge the cel ls) . This plug can also be
used to daisy chain additional solar units to
providing additional solar power and longer
battery l i fe (by plugging into the side USB
socket (C)) .

C. An additional USB socket on the side of the
unit provides an auxi l iary charging point for
mobile phones and other USB devices.
Apple iDevices such as iPods / iPhones /
iPads are supported with an upgraded
version if required.

Typical Outputs

Directly facing ful l sun approx. 300mA+

Laying flat 200-250mA

Cloudy 30mA

A Little Ray
Of Sunshine…

While browsing for interesting Raspberry Pi devices, I came

across the following item from CottonPickersPlace.

Specifications

Solar Panel 1 2 cel l 330mA 2 Watt Polycrystal l ine

1 1 0x1 35mm

Case Printed by BRB-3000 3D Printer with PLA

(PolyLactic Acid) material – bio-

degradeable. Typical ly takes 2h1 5min to

print. The raspberry pi, sits neatly inside.

60x90x45mm

Estimated Charge Times

The unit wi l l not overcharge the cel ls, and there is no

leakage discharge when it is not charging.

3000mAh Cells

21 00mAh Cells

CloudyFul l Flat

1 00h1 0h 1 3h20m

70h7h 9h20m

8

Usage Considerations:
My own tests with some old 2500mAh Cells,
provided around 4 hours of night-time usage,
reasonable considering the batteries are
several years old.

By using minimal peripherals and using the
more efficient Model A Raspberry Pi (when
released) should greatly extend the runtime.
The efficiency of the Raspberry Pi can also be
improved by replacing the bui lt-in 3.3V linear
regulator with a more efficient switched-mode
one – an extreme measure, but reported to
save about 25% of power (see
http://goo.gl/dqUZL for detai ls) .

Although the Raspberry Pi can be used in
many situations remotely, often you wil l want
to use it with a screen. Currently most
screens wil l require just as much if not more
power than the Raspberry Pi itself. This may
improve when the foundation can supply LCD
screens directly driven from the Raspberry Pi,
ultimately requiring less power than your
typical LCD monitor or TV. To this end, a
super-efficient e-ink based display would be
an excel lent option, fingers crossed that
becomes a reality.

For 24 hour remote operation (something
several Raspberry Pi users desire), i t is l ikely
that 2 or more solar units and plentiful sun
would be required. Additional ly, by designing
some methods to remotely switch off the
Raspberry Pi power supply and switch it back
on when required would mean that an
unattended remote setup would be viable.
Such a system could even monitor the
avai lable battery levels and power the
Raspberry Pi accordingly or set specific time
intervals for operations. We would love to
hear of some suitable designs!

Conclusions:
The compact unit offers a number of flexible
features, and for running the Raspberry Pi
from batteries it presents a good solution.

The addition of the solar panel nicely extends
the runtime of the system (particularly if you
l ive in a sunnier cl imate), or al lows charging
during the day and use at night for hours at a
time. When mains powered, it offers excel lent
protection against power-cuts, effectively
functioning as a UPS (Uninterruptible Power
Supply) . The unit also provides a means to
quickly transfer the unit to various locations
without powering off the unit (ideal for quickly
moving to the big screen to play some movies,
without the normal hassle of finding an
avai lable power socket, booting up etc).

CottonPickersPlace is working on a few larger
panel models which support larger batteries
too, which should be able to manage 24/7
operation and/or power 3rd party screens etc
at the same time.

Overal l , the unit offers great flexibi l i ty at
excel lent value for money (around £25
delivered). I t is very clear that a lot of time and
effort is put into each hand crafted unit.
CottonPicker has clearly taken care with the
design to keep the overal l cost as low as
possible without compromising on quality or
features, in my opinon hitting a great balance.

This may just be the missing piece you’ve
been looking for to complete your project, or
just a handy case which al lows you to cut the
power cord whenever you feel l ike it!

Article byMeltwater

Available from:

www.cottonpickersplace.com

Direct l ink: goo.gl/w9Rs3

Estimated Raspberry Pi Runtime

Model B – typical estimated power usage 430mA
depending on what is connected (ranges from 322mA

idle to 480mA+ peaks).

Model A – Eben stated this is around 200mA, so
300mA should be a good conservative estimate.

3000mAh Cells

21 00mAh Cells

CloudyFul l Flat

7h30m23h 1 4h30m

5h1 5m1 6h 1 0h1 5m

Night

7h

4h50m

3000mAh Cells

21 00mAh Cells

1 1 hCharge 40h

7h45mCharge 28h

1 0h

7h

Model B

Model A

9

The Raspberry Ladder Board
The Raspberry Ladder
board is a kit ofparts
intended to be used as
an introduction to
soldering andGPIO
programming on the
RaspberryPi.

The ladder board is based on my

original ladder game which I made

earl ier this year on a breadboard,

detai ls of which can be found here:

https://projects.drogon.net/raspberry-

pi/gpio-examples/ladder-game/

This version has been modified to

make it more useful for other

projects and hopeful ly wil l

encourage you to write your own

little games and simulations. The

software that I ’ l l be providing wil l

be a version of my original ladder

game, my Tuxx crossing simulator

and a new “Simon Says” game.

The kit includes a professional ly

made PCB, 8 standard LEDs (2

each of blue, green, yel low and

red), 2 smaller LEDs (green and

red), 4 push button switches, 1 4

resistors for the LEDs and

switches and a short (ready-

made) ribbon cable and IDC

connectors to connect the ladder

board to your Raspberry Pi.

You wil l need basic soldering

equipment, (soldering iron, some

solder, a pair of wire cutters) and

some time to assemble the board.

Additional ly some PCB cleaner

spray may be useful once it’s al l

finished, but it’s not essential . I f

you are comfortable with soldering

then it should not take you more

than 1 0-1 5 minutes to ful ly

assemble the board, but if not,

then it can be done in stages and

you can even test each stage as

you go.

You can buy the complete kit

including PCB from Tandy for

£7.00 including postage.

http://www.tandyonl ine.co.uk/electroni

cs/kits/raspberry-ladder-kit.html

Soldering the PCB version:
Soldering is not difficult, but

requires practice. Before you start,

please read this comic strip:

http://mightyohm.com/soldercomic

Once done reading, have a look at

the PCB and the components -

don’t remove the components from

their packs at this stage - the

Tandy kit wi l l be packed in the

bags in the order that you need

them, but see if you can identify

everything first. Study the photo of

the ful ly assembled board to see

what to expect.

Check the PCB - Look for any

obvious signs of damage and

identify where the components are

fitted. The white printed symbols

wil l help. The resistors have little

rectangles, the switches bigger

rectangles (almost square), and

the LEDs circles with a flat side to

them. There is a short row of 5

holes which are not used in this

project and 2 longer rows of holes

which are used for the ribbon

cable connector.

First we need to identify which

resistors are which. In the kit there

are two types, 220Ω and 1 000Ω.

The 220Ω ones are identified by

their colour banding - Red, Red,

Brown and the 1 000Ω ones are

Brown, Black, Red. However if you

are confused, then there are 1 0 x

220Ω resistors and 4 x 1 000Ω

resistors - just count them to see

which is which.

Start with the 4 x 1 000Ω resistors.

Bend the legs at the end of the

resistor and insert them into the

PCB in the four locations.

Resistors can go either way, but it

looks better if you make them all

l ine up the same way. Push the

leads of the resistors through their

holes and bend the leads outwards

as shown on page 4 of the comic

above.

I l ike to put al l four in at once then

use something l ike blu-tak to hold

them in-place when I turn the

board over to solder, but you may

wish to do them one at a time to

start with.

Assembly:
You need two hands, so make

sure the board is secure. I t’s also a

good idea to be in a well-l i t

location so you can see what

you're doing! See the video for

more ideas however, in-general

touch the soldering iron to both the

10

Prototype Raspberry Ladder Board and PCB

lead of the component and the pad

at the same time, wait 1 or 2

seconds, touch the solder to the

pad or the very end of the

soldering iron - it should flow

immediately and fi l l al l the gaps.

Remove the solder and then (quite

important this bit!) keep the

soldering iron there for another

second or two.

Most components wil l be

damaged by excess heat, but do

not be afraid to keep the heat

there for up to 1 0 seconds if

required. With practice you should

be able to do a solder joint in

about 5 seconds. Iron to pad and

component lead, pause, solder

unti l i t flows, pause, remove iron. I f

you feel it’s not a good join, then

wait a moment for it to cool down

and try again.

Make sure your soldering iron is

clean each time you pick it up -

use a damp sponge or the newer

“dry wipe” systems that look l ike a

tub of brassy springs.

Once you have soldered in your

first components (or first four!)

then it’s time to cl ip the leads

short. Again, this is a two-hand job

and you must hold the end of the

lead when you cut it - i f you don’t,

then it wi l l go flying off and when it

hits you it wi l l hurt. (Additional ly

your partner, mother, etc. wi l l not

be happy cleaning up the mess of

tiny l i ttle spikes of metal!) Hold the

end, and cut right next to the

solder join and put in the bin.

Once you have the first four

resistors soldered in, you can

progress to the 220Ω resistors.

Start with the two near the top of

the board, then the other eight

down the side.

Next is the switches. These should

hold themselves in the board while

soldering, but make sure you put

them in the right way round - they

are sl ightly rectangular, so if they

don’t seem to fit, then rotate them

a quarter of a turn and try again.

Now the LEDs. Hopeful ly by now

you should be getting the hang of

soldering. I left the LEDs unti l now

for two reasons - firstly it’s

general ly better to solder the low

components first, then the tal ler

ones, and also to give you lots of

practice soldering resistors and

switches which are more resistant

to overheating than LEDs are. You

should sti l l be OK for up to 1 0

seconds with the LEDs, but

hopeful ly by now you should be a

little quicker and more confident.

The LEDs are sensitive to which

way they go in, so do look at them

careful ly. They have a flat on one

side and this corresponds to the

flat on the image on the PCB. The

flat side always goes to the

negative side of the circuit, and

the other side (which has a longer

leg) always goes to the positive

side of the circuit.

Take your time when soldering

these in - try to make sure they al l

sit flat on the PCB and that they

l ine-up in a neat l ine.

Final ly the GPIO connector. Fit i t

into the board, secure it, solder

one pin then check it before

soldering the rest. You may wish

to go down one long l ine, then turn

the board and go down the other

l ine.

We’re done! Hopeful ly your

finished board wil l look something

l ike the one on the facing page.

Now it’s time to connect it up to a

Raspberry Pi and run the test

software.

Note: when you first turn on your

Raspberry Pi, or reboot it with the

ladder board connected, the two

smaller LEDs may be glowing

dimly. This is to be expected as

they’re being supplied with current

from the Pi’s on-board I2C pul l-up

resistors that form part of the I2C

bus.

Testing:
The test software uses the

wiringPi gpio command, so you

need wiringPi instal led first.

For wiringPi (if you don’t already

have it) :

For the raspberry ladder software:

To run the test program:

I t should take you through a few

simple steps to check that your

board is working properly.

A sl ightly modified version of the

Tux Crossing program is also

there - run it with:

When it’s initial ised, push the

bottom button to start the

sequence. More software and

detai ls next month!

Ful l documentation is supplied in

the README fi le about how the

LEDs are connected up, and the

ladderTest program is a bash

script which you may copy and

edit as required. You may also

look at some of the GPIO example

programs supplied with the

wiringPi package, but the real fun

starts next month when we write

some more programs for it.

11

$ cd

$ git clone

git://git.drogon.net/wiringPi

$ cd WiringPi

$./bulid

$ cd

$ git clone

git://git.drogon.net/ladder

$ cd ladder

$./ladderTest.sh

$./tuxx.sh

Article by
Gordon Henderson

After some initial experiments where a Rasp-
berry Pi operates LEDs and reads switches,
when the "I t works! " euphoria fades, astute
users may understand there wil l be problems
when they undertake to extend those simple
programs to more complex environments.

I discuss two such issues here: how to share
GPIO resources among multiple applications,
and use of interrupts to replace wasteful
status check loops.

There has been a frightful incidence of "run
this program as root" instructions published for
the Raspberry Pi user. This sounds to an ex-
perienced user rather l ike "Here, chi ldren;
these are razor blades. Take them outside,
and see what you can cut with them."

Root privi lege should be viewed as a last re-
sort. I ts proper use is system creation and
configuration - the establ ishment of a protec-
ted environment where faults in one program
wil l not affect other applications, and cannot
cause fai lure of the operating system. At
worst, a user program that errs should com-
promise only the resources al located to that
program.

Linux has a large number of device drivers,
programs typical ly part of the kernel that inter-
face between hardware resources and applic-
ation programs. Examples are fi le systems,
which expose user-friendly functions l ike
open, read, and write, whi le they manage
hardware access and maintain the necessary
data structures to al locate and free disk
space, share access in appropriate ways
between multiple programs, and handle recov-
ery after events such as power fai lures.

Root privi lege makes it easy to interfere with
system activities. I f one is lucky, the result is

immediate panic and the system crashes. In
less fortunate circumstances, malicious soft-
ware could be instal led in a system: this soft-
ware can then communicate over an Internet
connection with criminals who seek personal
information or might exploit your Raspberry Pi
for nefarious activities.

Linux has a general faci l i ty to manage GPIO
resources. I t creates a convenient interface
for user programs, protects GPIO resources
used by device drivers such as I2C and SPI,
and delivers pin-specific access so one ap-
pl ication does not need to worry about what
other programs do with other GPIO pins. This
individual pin interface is important, because
without it every GPIO application would have
to worry about race conditions with other ap-
pl ications that share a bank of GPIO pins
(locks, interrupt management, or other com-
plexities would be needed).

The Linux GPIO faci l i ty uses fi les in the
/sys/class/gpio/ directory. Yes, l ike many sys-
tem configuration or control fi les, these fi les
are owned by root. I shal l ignore this for now,
to make description of the interface easier, but
promise to return later and present a tool to
encapsulate the privi leged operation in a re-
sponsible way.

Setting Up The Pins

The echo command is commonly used in shel l
procedures to display messages to standard
output, or with output redirection to write to a
fi le. A simple example:

echo Hello there.

Interrupts and Other Activities with
GPIO Pins

Howto share GPIO resources among multiple applications,

anduse ofinterrupts to replace wasteful status check loops.

12

writes the output "Hel lo there." With output re-
direction:

echo Hello there. >file_01

creates the fi le "fi le_01 " that contains the
same message.

The echo command wil l be used for some ex-
amples of GPIO use. Pin 23 is used because
it is convenient and easi ly accessible at ter-
minal 1 6 of the 26-terminal Raspberry Pi
header. I t is labeled GPIO_GEN4 on the
Raspberry Pi schematic
(http://www.raspberrypi.org/wp-content/
uploads/201 2/04/Raspberry-Pi-Schematics-
R1 .0.pdf) .

To create a user interface for pin 23, use sudo
or, as root, execute:

echo 23 >/sys/class/gpio/export

This causes the kernel to create a
/sys/class/gpio/gpio23 directory which con-
tains four fi les relevant to this discussion: act-
ive_low, direction, edge, and value. The initial
values in these fi les (if there is no external
connection to this pin) are:

active_low 0

direction in

edge none

value 0

To make this an output pin:

echo out

>/sys/class/gpio/gpio23/direction

I f the output value should be initial ized first,
before the output driver is enabled, one of the
fol lowing may be used to set pin
direction with an initial value:

echo low >/sys/class/gpio/gpio23/

direction

echo high

>/sys/class/gpio/gpio23/direction

To set this pin output on or off:

echo 1 >/sys/class/gpio/gpio23/value

echo 0 >/sys/class/gpio/gpio23/value

To invert the pin logic:

echo 1 >/sys/class/gpio/gpio23/

active_low

Do this before reading an input or setting an
output value. When active_low is 1 (or any-
thing other than 0) and value is set to 1 , the
pin is driven low, etc.

Continuedover page...

PleasenoteGPIOreferencechangesfor

pins3,5& 13onRevision2.0

13

How fast can this mechanism change GPIO
pin values? A simple python program
http://ryniker.ods.org/raspberrypi/MagPi/
gpio23-max.py wil l generate pulses at 1 9 kHz.
I f this is written in C (see http://
ryniker.ods.org/raspberrypi/MagPi/23-maxa.c)
the frequency increases to roughly 1 20 kHz.
The actual frequency varies because the
Raspberry Pi does other things that temporar-
i ly suspend the loop - clock maintenance, net-
work activity and other user and system
processes.

The Program

As promised earl ier, here is the program
http://ryniker.ods.org/raspberrypi/MagPi/
gpio_control.c that executes operations which
require root privi lege in order to export a GPIO
pin for use by ordinary users. Comments at
the beginning of the program describe how to
compile and instal l i t. Once it is instal led (by
root) , because of its "setuid" characteristic, the
program runs with an effective userid of root.
Therefore, it has the privi lege needed to ex-
port or unexport a GPIO pin and set appropri-
ate permissions for the fi les used to control
that pin.

Programs that execute with root privi lege
should be written by real ly paranoid program-
mers. Most of the code in gpio_control.c
simply checks that the arguments are reason-
able, and tries to be informative if anything un-
usual happens.

To use gpio_control to export pin 23 so all of
the pin manipulations discussed earl ier do not
require root privi lege, simply execute:

gpio_control 23 export

gpio_control.c may be easi ly configured, be-
fore it is compiled, to al low GPIO access to al l
users or only users in the cal ler's group.
Each of the 26 GPIO pins may be individual ly
configured to permit or forbid export.

The Raspberry Pi uses GPIO pin 1 6 to control
the "Status OK" green LED. I f one tries to ex-
port GPIO pin 1 6, the operation fai ls because
the kernel is using this resource:

ryniker@raspberrypi:~$ gpio_control

16 export

export failed: Device or resource busy

Other kernel programs may acquire GPIO
pins, which can make them unavai lable to
users. This is good. Little harm could come
from a user turning the status LED on and off,
but what about the kernel I2C driver? It could
easi ly suffer erratic fai lures if the pins it uses
are changed in ways it cannot understand.

The kernel remembers the state of GPIO pins.
For example, suppose a pin is exported, set
by the user as an output pin, then unexported.
The userspace fi les disappear, but the pin re-
mains an output pin with the last value set. I f
this pin is again exported, the userspace fi les
are recreated to manifest the saved state.

The echo command is convenient to use in
shel l scripts, occasional ly on the command
line, but Python is much easier for real pro-
grams. The dozen l ines in gpio23-max.py
should provide a simple example.

Now that the basic elements of GPIO control
have been exhibited, this faci l i ty can be used
to replace the "infinite loop" operation, where a
program repeatedly reads the value of an in-
put signal and performs some operation when
it changes; with a vastly more efficient pro-
gram that only runs when the input signal
changes. With only one input, and absolutely
nothing else to do unti l i t changes, a loop may
not be a problem. However, such a loop
wants to consume 1 00 percent of the
CPU resource, and therefore competes ag-
gressively with everything else that might want
some piece of the Raspberry Pi.

One can introduce a delay in the pol l loop, say
a "sleep 0.5" command to delay one-half
second before starting the next loop iteration.

14

This al lows other activities to run during the
sleep period, but means there is an average
delay of one-quarter second before any
change in the input is observed. Shorter
delay, faster response, more wasted
CPU... ugly choice.

As the number of inputs grows, and the num-
ber of responses to those inputs becomes lar-
ger and more varied, it often is necessary to
manage tasks with different priorities. Inter-
rupts are the means to quickly connect an in-
put such as "There is a chasm directly in front
of the vehicle" to the response "Stop! ".

Another Python Program

http://ryniker.ods.org/raspberrypi/MagPi/
interrupt_test23.py wil l i l lustrate GPIO inter-
rupt handl ing. This program configures pin 23
as an input, sets the pin's edge fi le to "both" so
interrupts wil l occur for "fal l ing" and "rising"
transitions, then opens the pin's value fi le. In-
vocation of select.pol l() creates a poll ing ob-
ject "po", then po.register() adds the GPIO
pin's value fi le as one of the sources which
can satisfy a subsequent po.pol l() request.
This program uses only the one interrupt
source, but other GPIO pins, and many other
sources, can be registered with the pol l object.
For instance, a pipe that connects to another
process could be an interrupt source, or a
socket that receives data over a network from
a remote system.

The second operand to po.register specifies
which of three conditions wil l be recognized as
interrupts. The select.POLLPRI value spe-
cifies only "priority data to read" wil l cause an
interrupt. The other possible conditions -
"data avai lable" and "ready for output" - are al-
ways true for a GPIO pin, therefore a poll op-
eration when either of these is enabled would
always complete immediately. I f other inter-
rupt sources are registered with po, they might
use these conditions.

Sometimes, the absence of an expected sig-
nal may be important. The po.pol l(60000) cal l
wi l l wait for an interrupt, but only for 60
seconds (60,000 mil l iseconds), before it re-
turns an empty l ist of interrupt signals to indic-
ate it timed out.

The kernel maintains the value fi le for a GPIO
pin with two bytes of content: a 0 or 1 charac-
ter to represent the pin's current value, and a
newline character. f.seek(0) resets the current
location in the fi le to the beginning, so the
value of the first character may be read again.

Expanding The GPIO

Only a few GPIO pins are accessible on the
Raspberry Pi, but several people have shown
how inexpensive ICs such as MCP2301 7 can
use the I2C interface to expand this number.
A design such as
http://shop.ciseco.co.uk/k002-sl ice-of-pi-o/
can be used up to 8 times to add 1 28 digital
I /O pins to a Raspberry Pi. Use the
MCP2301 7 open-drain interrupt configuration
to connect interrupt signals from multiple
devices to a single GPIO pin. A pul l-up resist-
or to 3V3 keeps the input high, unti l a connec-
ted device drives it low. When an
interrupt occurs, the interrupt handler has to
read values from all the interrupt-generating
devices to learn which have active interrupt
signals (there may be several) , launch the ap-
propriate response programs, then clear al l
the interrupt requests (so the GPIO input
returns to the high state) to al low the next in-
terrupt to occur.

A Summary Of The URLs

Raspberry Pi schematic:
http://www.raspberrypi.org/wp-content/
uploads/201 2/04/Raspberry-Pi-Schematics-
R1 .0.pdf

The programs:
http://ryniker.ods.org/raspberrypi/MagPi/
gpio23-max.py
http://ryniker.ods.org/raspberrypi/MagPi/
23-maxa.c

IO Expander:
http://shop.ciseco.co.uk/k002-sl ice-of-pi-o/

Article byRichardRyniker

15

Q:Whydid you choose to start Raspbian?

I read in January that the Foundation was
planning to use Fedora and I wondered if I
could do the same thing but with Debian as
that is my preferred Linux distribution on ARM
processors. For a long time I have been
interested in learning how to bui ld an
operating system and also to contribute
something back to the Debian community.
Raspbian gave me this opportunity.

I real ised it was going to take a certain amount
of resources, time and effort to create
Raspbian. I started asking questions on the
forums to understand what someone would
have to consider if they undertook this. I
poked around to see how to make it happen
and it unfolded from there.

Raspbian is a joint effort between myself and
Peter Green (Plugwash) who is a Debian
developer.

Q: Why the Raspberry Pi, as there are other
relatively lowcost boards available?

I have a personal interest in inexpensive Linux
systems and am very encouraged by the
Raspberry Pi Foundation demonstrating the
desire and need in the market for a system
such as the Raspberry Pi. Ultimately my
interest is in seeing these systems at a $5-$1 0
price point. I t may take a few years to get
there but things could get a lot more
interesting in this world when there is large
scale access to very cheap but relatively
sophisticated computers such as the
Raspberry Pi.

Q: How did you go from having a working
build of Raspbian to being the official OS for
the RaspberryPi Foundation?

Peter Green and I were well under way with
the project when in the middle of June we got
hints that the Foundation was interested in
Raspbian. When I started my expectation was

to create an alternative to Fedora used by
maybe 1 0-20% of Raspberry Pi users and I
did not expect Raspbian to become the
"official" Linux distribution on Raspberry Pi.
After releasing the first few test images of
Raspbian and a significant part of the
repository was bui lt people started getting
enthusiastic saying they were hoping the
Foundation was going to choose a Debian
based distribution. I knew the Foundation was
aware of Raspbian via the forums and that if
they thought it was worthwhi le they would
make a choice to use it.

Q: How do Raspbian and the Foundation's
releases differ?

Raspbian is a recompilation of the packages
that comprise Debian ARM Wheezy hardfloat
with the compilation settings tuned for the
ARMv6 processor in the Raspberry Pi. We are
using the kernel work coming out of the
Foundation unchanged because the binary
interfaces into the kernel do not have any
floating point components. That saved a lot of
effort enabling us to concentrate on the
recompilation of the packages.

Alex Bradbury, the Foundation's lead
developer, worked on the Foundation's
Raspbian image. As Raspbian is essential ly a
clone of Debian he took the same scripts he
had used for the Debian based image, made
minor changes and used them to bui ld their
own Raspbian based image. I think he was
pleased to see that we were closely fol lowing
Debian, hence it was a fairly trivial process to
create a Raspberry Pi optimised version of
Debian based on our Raspbian packages.

Q: How suitable did the Freescale iMX53
Quick Start Board you bought in March prove
to be as a build platform?

We are sti l l using 8 Freescale iMX53 boards
to bui ld Raspbian packages. These are fairly
fast systems with a 1 GHz ARMv7 processor
and 1 GB of RAM. When bui lding, some of the

An interview with Mike Thompson
The Raspbian distribution of Debian provides the operating system behind most

RaspberryPi installations. In this month's The MagPiwe interviewMike Thompson

the founder ofRaspbian.

16

packages require lots of RAM to bui ld
enormous l ink structures in memory and we
run into 1 .5-2GB of swap as we are exceeding
the avai lable RAM. A typical modern PC with
4GB of memory may take an hour or so to
bui ld a large package, but on these ARM
systems it can take upwards of 20-30 hours.
Having 8 systems avai lable for paral lel bui lds
was needed in May and June when we were
bui lding the bulk of the 1 8000 source
packages which translates into just under
38000 binary packages for Raspbian. I f we
only had one system we would sti l l be bui lding
packages today. We are using modified
versions of Debian's own bui ld tools to
distribute the bui lding of packages across the
8 systems.

I came into this project with very l imited
experience of bui lding operating systems and
had to learn everything needed. Fortunately
for me, Peter Green joined and his experience
with Debian and Debian bui ld tools was
essential to making Raspbian possible. I had
been a software developer al l my career but
never attempted any bui ld on this scale. I now
ful ly understand why companies have bui ld
engineers that just focus on bui lding large
software projects!

Q: How dependent were you on the upstream
work undertaken by the Linux community?

Extremely dependent. Raspbian would not be
possible if the group in Debian who created
armhf had not done their upstream work 1 8
months prior, albeit they went for ARMv7 and
not ARMv6. Peter Green is adamant, and I
think correctly so, that Raspbian be as close
to an official Debian release as possible
without actual ly being an official release. As
long as we maintain that commitment with
Raspbian, it wi l l remain a firm base for the
Raspberry Pi Foundation and the community.

Downstream, keeping Raspbian so close to
Debian reduces the risk of just two guys
working on it. Peter Green ensured everything
we have done is completely open. I f we were
to close up shop tomorrow our work is out
there mirrored in 30-40 places around the
world. Anyone with knowledge of bui lding
Debian could easi ly pick it up and keep
maintaining it. Therefore Raspbian is a low
risk to the Foundation.

Q: Are there any other performance gains that
can be had in Raspbian?

I think we are maxed out on the software side
of things. Replacing the CPU with an ARMv7

or adding more memory [Editor's note: the Pi
has just started shipping with 51 2MB RAM!]
would be great as some people are hitting the
cei l ing, for example with web browsing on a
GUI desktop.

I think in general software efficiency has gone
by the wayside, especial ly with GUI
applications. I always value lean and efficient
use of memory for computation. Unfortunately
the real ity is that lots of RAM and a powerful
CPU is now needed for most GUI apps. We
should sti l l encourage people to learn to
program efficiently with l imited resources. I f
systems like the Raspberry Pi had been
avai lable eight years ago we may have seen a
lean branch of productivity software requiring
less resources in general on al l computer
platforms.

Compared to Turbo Pascal that came out on
CP/M in the early 1 980s, and later Turbo C,
both of which featured small , fast and ful ly
integrated development environments,
modern GUI based development
environments take up enormous resources
and do not run well , i f at al l , on the Raspberry
Pi. I t is sad that today there is no real
equivalent of Turbo Pascal or Turbo C on the
Raspberry Pi as these systems went away
when GUIs came in. I bel ieve there is a huge
opportunity to bring these types of tools back
for the comparatively low resource
environment of the Raspberry Pi.

Q:Whatwork is left to do on Raspbian?

We are now largely in maintenance mode. As
Debian releases updates to packages we pull
them down, bui ld and push out to the
repositories. Personal ly, I have achieved my
goal with Raspbian of creating an ARMv6
hardfloat version of Debian.

I am happy that Raspbian has enabled so
many things in the Raspberry Pi community. I t
is also great that I have been able to give back
to the wider Linux community and I hope this
wil l lead to thousands more Debian users in
the future.

Mike Thompson is a Computer Engineer living in
the San Francisco Bay Area. He has a diverse
background in embedded systems design,
handheld/mobile application development, PC
application development and large scale Internet
systems design. He is a serial entrepreneur who
cofounded two previous companies and is the
founder and a lead developer for Raspbian, the
leading operating system for the Raspberry Pi.

17

The Raspberry Pi 's processor has a clock
speed of 700MHz. This means it performs
700,000,000 cycles every second. The clock
speed of a processor is an indication of how
fast it can perform operations. I t is measured
either in megahertz (MHz) or gigahertz (GHz)
with 1 000MHz equal to 1 GHz. So, the higher
the MHz the faster the processor wil l operate.

What are Overclock and Overvolt?

While 700MHz is the design speed of the
Raspberry Pi processor, there is a way of
getting faster performance... Overclocking.. .
and thanks to the latest Raspbian image it is
easier than ever!

Overclocking is the process of making a
component or computer run faster than its
designed speed, though it can involve a trade-
off with increased instabi l i ty and decreased
processor l i fe. For the Raspberry Pi these side
effects are so minimal you would be fool ish
NOT to perform some overclocking!

Overclocking requires additional power. I f you
want to overclock your Raspberry Pi to
900MHz and higher you wil l need to
provide extra power by 'overvolting'. How
far you can overclock depends on several
factors; your Raspberry Pi, the quality of
your power supply and possibly also your
SD card. Because of manufacturing
tolerances, 700MHz is the manufacturer’s
guaranteed performance. But every
Raspberry Pi is different and so each one
has different l imits.

There are several overclock and overvolt
settings. These are detai led at
http: //elinux. org/RPi_config. txt#

Overclocking_options but the latest
Raspbian image contains an easy

configuration option. Importantly this al lows
you to overclock and overvolt your Raspberry
Pi whi le sti l l keeping the warranty intact.

Power supply considerations

When overclocking it is important that you use
a good power supply. I use a Kindle charger
that is high quality and provides a current of
850mA. Original Apple iPhone chargers are
also good choices and provide 1 A of current.
Beware of third party iPhone chargers. The
Raspberry Pi Foundation has identified that
some of these do not perform as specified.

CAUTION: Make a backup

Before we begin, it is worth noting that there is
a possibi l i ty that overclocking may corrupt the
data on your SD card, especial ly if the Turbo
option is chosen. Make sure you have a
backup of any important documents and also
of your /boot/config. txt fi le. The easiest
way to do this is to copy the fi les to a USB
thumb drive or upload them to an onl ine
storage service such as Dropbox.

Alternatively you can make a complete backup
image of your SD card using the same
Win32DiskImager program that you used to
create your Raspbian SD card. This time,
instead of writing an image to the SD card you

Fancygetting some more oomph from yourPi?

Go Turbo!

18

are going to create a backup image by reading
from the SD card. Insert your SD card into an
SD card reader in your Windows machine and
start Win32DiskImager. Enter a name for your
backup image and cl ick on Read. When the
backup is complete, the fi le size of the backup
image fi le should be very similar to the size of
your SD card.

Overclocking

To change the overclock settings start your
Raspberry Pi. From the terminal enter the
command:

$ sudo raspiconfig

A blue box should appear, as shown on the
opposite page. This is the same configuration
menu that appears when you start the
Raspbian image for the first time. The first
thing to do is to update the raspi-config tool.
Use the arrow keys to scrol l down and choose
the “update” option. Wait for raspi-config to
look for its latest version. Once that has
finished we can get on with overclocking!

Now scrol l down and choose the “overclock”
option. You can select how far you would l ike
to overclock. There are five preset options for
you to pick from; None, Modest, Medium, High
or Turbo.

Use the arrow keys and choose your preferred
overclock preset. I t is best to start with Turbo
to see if that is stable. I f not then try High,
fol lowed by Medium then Modest. After
making your choice, exit from the raspi-config
tool and reboot. You must reboot before the
changes wil l be made. The changes are
written to the fi le /boot/config. txt .

Did I just break my Pi?

But what if your Raspberry Pi does not boot up
any more? This means that the overclock
settings have exceeded the operating l imits of
your Raspberry Pi, but don't worry as it is easy
to fix. First unplug the power to your
Raspberry Pi, wait a few seconds then power
up your Raspberry Pi again. Immediately
press and hold down the <SHIFT> key on
your keyboard. Watch the text on your screen.
You wil l see the fol lowing text:

[ok] Checking if shift key is held down: Yes.

Not switching scaling governor.

This means that the overclock settings are
ignored and wil l al low you to boot up as
normal. I f you were unlucky, it is possible your
SD card fi le system got corrupted and you wil l
have to restore from your backup image. I f you
have powered up successful ly, you can open
the terminal and enter the command:

$ sudo raspiconfig

This time, when you choose “overclock” try a
slower option.

I f you operate your Raspberry Pi headless via
SSH or another remote access application
and cannot hold down the <SHIFT> key

during start-up then you need to change
the overclock settings manually using
another computer with an SD card slot.
You want to edit the fi le config. txt .
For Linux and Apple Mac you can use
their default text editor programs. For
Windows you wil l find it awkward to edit
the config.txt fi le using Notepad. For a
better alternative I suggest you
download the free TextPad program
from http: //www. textpad. com.
The entries that you need to edit are
arm_freq, core_freq, sdram_freq
and over_voltage . Use the image to

the left as a reference for the values you
should use.

You have chosen an overclock preset and
your Raspberry Pi appears to have started
again without any problems. How do you know
it wi l l be rel iable?

Continuedover page...

19

Reliability tests

There are a couple of tests you can perform to
determine if your Raspberry Pi wi l l be rel iable.
I t is no fun having a fast but unrel iable system.
I f you have Quake 3 instal led this is a great
test of both the CPU and GPU overclock
settings. Another very easy test that I use is to
simply perform an upgrade of the Raspbian
image. To do this start your Raspberry Pi,
open the terminal and enter the fol lowing
commands:

$ sudo aptget update

$ sudo aptget upgrade y

This is a good test of the CPU and SDRAM
overclock settings. Depending on the number
of updates this could take 30 minutes but you
wil l now have the latest system.

Once complete, reboot your Raspberry Pi.
This time you want to pay close attention to
the messages that appear during start-up.
Look out for “mmc” messages or any
messages related to fi le system errors.
Additional ly look out for [warn] and [fai l]
messages. I f you see these messages this
suggests a potential weakness and you
should try the next lowest overclock preset.

I f you have different SD cards then it is worth
testing each of these. I tested three Raspberry
Pis with nine different SD cards ranging in
speed from class 2 to class 1 0. Each
Raspberry Pi was a Revision 1 device with the
USB poly fuses replaced with wire l inks. They
were powered from the same USB hub which
had a 2A power supply. One of the Raspberry
Pis was successful up to the Medium
overclock preset; the other two were
successful up to the High overclock preset.
None of the Raspberry Pis worked rel iably
with the Turbo preset.

Interestingly, the two Raspberry Pis that
worked with the High overclock preset only
did so with seven of the nine SD cards. They
fai led with the other two cards; a Transcend 4
GB class 6 card and a Lexar 1 6 GB class 6
card. However, your results may be different.

Monitoring

When overclocking it is very useful to know

the current CPU frequency and CPU
temperature. You can do this very easi ly in
LXDE. Right-cl ick on the Task Bar along the
bottom of the screen and choose Add /

Remove Panel Items. The Panel
Preferences dialog wil l appear and the Panel
Applets tab should be selected. Click on the
Add button. Choose CPUFreq frontend

and cl ick the Add button. Repeat this process
but this time choose Temperature

Monitor . You may find it useful to add other
applets such as Volume Control and
Network Status Monitor .

Another simple test is to start Midori and visit
http: //www. raspberrypi. org. Whi le
this is loading, keep your mouse hovered over
the CPUFreq frontend applet. You wil l see
this change between 700MHz and the CPU
frequency defined in your current overclock
preset.

To watch a video about overclocking plus
other Raspberry Pi topics, please visit my
YouTube channel:
http: //www. youtube. com/user/TheRa

spberryPiGuy.

Article byMatthewTimmons-Brown
& Ian McAlpine

While ordering a copy of The MagPi from
http: //www. modmypi. com, I noticed
they sel l a cool ing kit. "The Raspberry Pi
Heat Sink Kit" comprises of three small
heat sinks plus thermal tape and could
help improve device rel iabi l i ty. There is a
heat sink for the SoC, GPU and power
regulator.

In my own tests the CPU temperature
dropped from a maximum of 61 oC without
the heat sink to a maximum of only 52oC
with the heat sink.

DID YOU

KNOW?

20

Want to keep up to date with al l things Raspberry Pi in your area?
Then this new section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area,

providing you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Bloominglabs Raspberry Pi Meetup
When: First Tuesday of every month @ 7:00pm

Where: Bloomington, Indiana, USA

Meetings are the first Tuesday of every month starting at 7:00pm unti l 9:00pm, everyone is
welcome. Further information is avai lable at http://bloominglabs.org

Durham Raspberry Jam
When: Wednesday 1 4th November 201 2 @ 5:30pm
Where: Durham Johnston School, Durham, UK

The meeting wil l run from 5:30pm unti l 7:00pm and there are a l imited number of places.
Tickets and further information are avai lable at http://durhamjam-eorg.eventbrite.com

Sheffield Raspberry Jam
When: Last Wednesday of the month @ 6:30pm

Where: 1 st Floor, The Workstation, Grinders Hil l / Brown St., Sheffield, S1 2BX, UK

The meetings are hosted by GISThub. Doors open at 6:20pm and the meeting runs from 6:30pm
unti l 8:30pm. Further information is avai lable at http://sheffieldraspi1 21 0.eventbrite.com

Publi
cise your

Rasp
berry

Jam
here

21

I f you were an early adopter of the Raspberry Pi, you

most l ikely started off running 'Debian Squeeze' - a

Linux Operating System. You spent time learning how

to download the image, and write it to an SD Card.

Then you were probably introduced to LXDE - the

l ightweight x-window graphical user interface. I t looked

similar to Windows but things were just sl ightly

different. You then had to work out how to use a

package manager - the 'apt-get' command, 'aptitude' or

perhaps 'synaptic', so that you could download and

instal l new application packages.

You just got a decent col lection of useful applications

instal led, when you discover that a newer version of

Squeeze is avai lable, which is better than the previous

one, so you start over again. Then not much later there

is yet another updated operating system - Debian

Wheezy 'Beta'. But you heard that there were some

problems with that version, and didn't know whether to

stick with Squeeze or move to Wheezy. I t was all so

confusing.

Meanwhile, many other people were sti l l waiting

patiently for their Raspberry Pi order to be processed.

Final ly the l ittle bundle arrived and you were so happy.

Then you learned that a new and improved version of

the Pi was now available, which had mount holes and

various other tweaks, and you wondered if yours would

now be considered 'old-hat'. Then to make things even

worse, it is announced that the Raspberry Pi wi l l now

come with double the amount of memory, and for the

same price!

Final ly a better version of Wheezy comes along, but

now it's become something cal led 'Raspbian Wheezy',

which is much faster, and many of the bugs have been

fixed. Oh, wait a second, here comes another release

of it, which is even better, and I hear there is another

version already planned to be released in the next

couple of weeks.

Now, if you are someone that hates change, you are

probably banging your head against the wall by this

point, and wondering if this computer stuff is real ly for

you after al l .

In computing, things often happen very quickly, and

dealing with a steady of flow of updates is something

that you have to get used to. I f you can't adapt to

change, then you wil l get left behind.

Most l ikely the pace of development wil l start to slow

down to a degree once the foundations are put in place

- but we are not quite there yet. You can expect with

the educational release of the Pi that the boards wil l

come with a case included and probably some form of

instruction manual. Also l ikely is a much improved

image, bundled with many goodies. Despite this, we

PPIIEEVVOOLLUUTTIIOONN
The pace of development surrounding the Raspberry Pi is

hard to keep up with...

22

must not expect things to stagnate at that stage. A

number of hardware add-ons and accessories are due

to fol low; cameras, screens, and other electronic

devices that can be hooked up to your Pi. Most l ikely at

that stage, your current non-cased, 256Mb Pi which

lacks mount holes is going to be practical ly worthless.

[Ed: Not true! See "Peter Lomas Interview" in Issue 12].

What we have to remember is that the purpose of the Pi

is to learn the principles of programming, interfacing, or

just general computing. Although many things change,

the fundamental principles do not. The Raspberry Pi is

a device for learning, and for experimenting with. I t is

not a fashion accessory or a luxury gadget. The Pi is

more of a cheap disposable item. There are people that

sel l their iPhone 4 just because there is now an iPhone

5 avai lable. There wil l be Pi owners that fal l into the

same trap, but the people who wil l get the most from the

Pi are those that stop worrying about these things and

spend more time tinkering with whichever version they

happen to have, and learning from the experience.

With this in mind, I real ised that my own SD card was

out-of-date and thought I had better take a peek at

'Raspbian Wheezy 1 8/09/201 2 Edition'.

Back in issue 5, I wrote an article comparing Debian

Squeeze and Wheezy, and one of the major downfal ls I

discovered was that although Wheezy was quite a lot

faster than Squeeze, it scored very poorly on

multimedia playback. So I decided I would first see if

anything had improved with the updated image.

Firstly I downloaded the 439MB zipped image fi le from

http://raspberrypi.org/downloads. This took about 45

minutes using the direct download l ink from my

Windows computer. Then another 45 mins to write the

image to the SD card using Win32 Disk Imager. I have

a class 4 MicroSD card which is rather slow, but it does

the job.

Next I plugged the MicroSD card (inside a normal SD

card adapter) into my Pi and booted up to the Raspi

Config screen.

Interestingly, I didn't have to change the overscan

values for my monitor this time (as I have always had to

do with previous versions of Debian).

I chose to expand the rootfs so that I could make use of

the 1 6Gb card. I also set the timezone to London and

configured the overclock to 1 000MHz Turbo Mode,

then exited the menu and rebooted.

After logging in I started LXDE by typing 'startx'. The

desktop looked almost identical to the previous version,

although the picture looked sharper. I opened an

LXTerminal window and typed 'sudo amixer cset

numid=3 1 ' to direct audio to the analogue output.

Then I used 'sudo apt-get update' and 'sudo apt-get

instal l xine-ui ' to get the xine media player. Xine is a

media player I had looked at some time ago (during the

making of The MagPi issue 3). I t looked promising, but

was real ly too sluggish to be useful. I thought perhaps

with the newer OS and the overclock that things might

be better this time around.

Fortunately my new Pi had final ly arrived from RS

Components (after a six month wait) , and it was able to

handle the ful l 'Turbo mode'. Unfortunately it arrived a

week before the 51 2MB version came out and it also

lacked the mount holes.

I did have an older revision of the Pi board that

Anti loquax had kindly sent me, but this one couldn't

handle the overclock - it fai led to boot in Turbo mode

and was unstable with any of the lower overclock levels.

Xine was able to open and play many formats that I

tested, although there was something odd about getting

the fi les to open. Only after cl icking the 'play next

chapter >| ' button would it select the correct media to

play, otherwise a message stating 'There is no MRL'

kept appearing. Xine managed to play avi, mp3, mp4,

mov as well as wma, wmv and... mpeg - YES MPEG.

However, it started dropping frames if you attempted to

play a video at anything larger than 1 00% zoom. I

haven't paid for the codec for MPEG. Xine was rather

buggy and unstable, however the command line player

'omxplayer' worked better, but supported far fewer

formats. Sti l l a massive improvement over the previous

version of Raspbian Wheezy, and I think this one is

worthy of putting Squeeze final ly to rest once and for al l .

I took a break from media players and instal led Scribus

- the desktop publishing program we use to make The

MagPi. I loaded up one of the Python Pit documents

from issue 6, and noticed that it was significantly

quicker thanks to the overclocking. I t was particularly

better when switching between layers, zooming and

right-cl icking to bring up the properties dialogue box.

Final ly I instal led a few arcade games: 'beneath-a-steel-

sky', 'geki2', 'geki3', 'pangzero' and 'xsoldier' al l worked

nicely.

Updated distributions are not necessari ly better overal l

- sometimes it's worth holding back from upgrading unti l

the bugs have been ironed out, but burying your head in

the sand and ignoring the march of progress is also a

bad idea. Always keep an eye on what's going on in the

community to avoid missing out on the cool updates

and performance tweaks.

Article byJaseman

23

make is a central part of bui lding packages of compiled code or documentation on a Linux system.

Open a terminal window. Then use the nano editor, described in the Issue 3 C Cave article, to create a fi le cal led

Makefile containing:

Create newFile.txt if it is not present
newFile.txt:

touch newFile.txt
where there is one tab before touch. Save the fi le and in the same terminal window type make. The first time make is

typed, make looks for the fi le newFile.txt. I f the fi le does not exist it runs the touch command and the touch
command creates newFile.txt. I f make is typed again, it finds newFile.txt and does not run the touch
command.

Similar to other scripting languages, comments start with a hash or pound character (#). The target newFile.txt
has no spaces or tabs in front of it and is fol lowed by a colon. Dependencies for the target can be added after the

colon. The actions are given on l ines after the target name and must be prefixed by a tab character. I f white spaces

are used, make wil l report an error. By default make looks for a fi le cal led Makefile. Other fi le names can be used

by using the -f option. For example, make -f another.mk
Processing dependencies is where make becomes real ly useful . A small C program can be used to demonstrate this

concept. Using the nano editor, create three fi les - main.c, printString.c, printString.h - and place

them In a new folder.

main.c
#include "printString.h"
int main() {

printString();
return 0;

}
printString.c

#include <stdio.h>
void printString() {

printf("Built with make!\n");
}

and printString.h
void printString();

The basics ofGNUMake

MMaakkiinngg ccooddee ddeevveellooppmmeenntt ffaasstteerr

24

Now create a new fi le cal led Makefile containing,

printString: main.o printString.o
gcc -o printString main.o printString.o

main.o:
gcc -c main.c

printString.o:
gcc -c printString.c

clean:
rm -f *.o

This time typing make wil l cause each .c fi le to be compiled into a .o fi le. Then the .o fi les are l inked together to form

an executable cal led printString. The printString target is the first target in the fi le and is therefore the default

target. When make runs it checks the dependencies of printString, which are that the main.o and

printString.o fi les exist and are not newer than the target printString. I f the fi les do not exist then the target to

make the fi le is run. Any target other than the default target can be run by typing the target name after the make

command, e.g. make clean
Writing make fi les where each of the fi le names needs to be specified can rapidly become very time consuming.

Automatic variables can be used instead of explicitly specified targets,

printIt: main.o printString.o
gcc -o $@ $^

%.o: %.c
gcc -c $< -o $@

clean:
rm -f *.o

This Makefile has exactly the same action as the previous one. The automatic variable $@ is the target name, $^
are the names of al l of the dependencies, and $< is the name of the first prerequisite. For each .o fi le required by the

default target, make tries the wildcard %.c. I f the .c fi le is missing make wil l report an error.

Wildcards can also be used to define a l ist of objects from the l ist of .c fi les in the present working directory,

OBJECTS = $(patsubst %.c,%.o, $(wildcard *.c))
printIt: $(OBJECTS)

gcc -o $@ $^
%.o: %.c

gcc -c $< -o $@
where OBJECTS is a variable. In this case, al l of the .c fi les in the present working directory are used to bui ld an

executable cal led printIt. The command wildcard l ists al l fi les which match the pattern *.c. Then patsubst
removes the .c ending and replaces it with .o. The resulting l ist is assigned to the OBJECTS variable. Try using

touch to update each fi le time stamp and then re-run make to see what happens.

Makefiles can have many layers of dependencies. For software distribution on multiple platforms, the Makefiles
are typical ly generated from templates using the autoconf tool.

Article byW. H. Bell

25

C++ is a programming language, l ike C, Python and Java. I t is a bit more advanced, but it is very
popular and many of today’s video games and many other programs are written in C++. I t's fast
and easi ly portable, which means the same code is mostly transferable between Linux, Windows
and Mac OS machines. I f you're up for the chal lenge, read on!

Try typing:

#include <iostream>using namespace std;
int main(){ // Output a message.cout << “Hello, welcome to C++” << endl;return 0;}

save it as “hello.cpp” and then compile by typing g++ -o hello hello.cpp
After compil ing and running, you should see it print the message within the speech marks. Try
changing this, recompil ing and running, and see what happens. At first this looks quite daunting,
but look below and on the next page, where there is an explanation of the unfamil iar terms.

So now we’ve written our first program, how do we know what it wi l l do,
and what everything means? Here I wi l l explain the important aspects of
the program:

#include <iostream>
This is our include statement. This is used to include function, class and data definitions from the
standard iostream l ibrary. The include statement is needed to use the cout and endl
functions. The iostream l ibrary contains information on inputting and outputting.

int main()
This is the main function. Al l programs need a main function and anything within the main function
is executed. Al l functions begin with ‘{‘ and end in ‘}’ .
// Output a message

Anything beginning with ‘//’ in C++ is a comment, and l ike comments in other programs these are
ignored by the compiler. C-style comments using /* */ are also al lowed.

cout and endl
These are our commands. The cout command tel ls the program to output everything between the
‘<<’ and the ‘;’ . endl simply means ‘end l ine’ .

An introduction to the C++ programming language - one of

the most popular used today.

26

;
Some languages use these, semicolons. To explain them, think of the way we write normal, spoken
languages l ike English. We end our sentences with a ful l stop. This is a similar idea - every time we
want the program to move onto something new, we end it with a semicolon. Because of this we can
use whitespace, which are spaces and new lines, however we like.

return 0;
This lets the program know that the main function is over, which means it is finished. I t wi l l stop
running past this point.

With this information, lets move on to some more examples. Try the fol lowing:

#include <iostream>using namespace std;
int main(){ // Create 2 variablesint a, b;a = 1;b = 2;

// Output the sum of these variablescout << “a + b = ” << a + b << endl;return 0;}
Here, we have made two variables, a and b. They are integers, which means they are whole
numbers. We have created the two, and then output the sum of the two.

Of course this is al l wel l and good, but the output wil l always be 3 unless we change the code,
which is not very useful. Instead, we could modify the program so we take a user input, and add
those together. Try this:

#include <iostream>using namespace std;
int main(){ // Create 2 variablesint a, b;

// Ask for and store user inputcout << “Input the first number: ”;cin >> a;
cout << “Input the second number: ”;cin >> b;
// Output the sum of these variablescout << a << “ + ” << b << “ = ” << a + b << endl;return 0;}

This wil l al low you to get the user’s inputs and add the two values.
Article byAlexKerr

27

Defensive Bases

This month we are having a go at some "defensive

programming"; in other words trying to write a program

that can handle errors.

The "get_base" Script

This part of the code al lows you to set the input and

output base for the program to use. I t won't al low you to

enter a number less than 2 or greater than 16. This wi l l

help to avoid some real ly strange (and incorrect) results.

Hex Joke!

I f only DEAD people understand hexadecimal ,
how many people understand hexadecimal?

(answer on next page!)

This converts a number

from denary into the

output base, getting the

digits from the string

"DIGITS" (see next page).

Sorry the scripts are in a funny order this month - space is tight!

28

Stuck?

You can get al l the scripts at:

http: //tinyurl .com/Scratchbases

Here's the start of the main program.

After the "get_base" script has got your

input and output bases, the "get_number"

script makes sure you have entered a val id

number in your chosen input base.

The "get_number" script also works out the

denary (base 10) version of your number,

ready to cal l "to_base_out" .

As Scratch doesn't have an "x to the power y" block,

I am using logarithms:

10 (log x)*y = xy

Joke Answer:

57005 people understand Hex.

This bit means that if you are doing

base 4 (for instance), the only digits

you are al lowed are 0, 1, 2 & 3.

Scratch On!

29

Last month The Python Pit showed how

to pull in configuration settings from an

external text file. This month another

option is presented.

Using command line arguments gives

fine control over a program at the

moment of execution.

line generator with command line arguments

By Colin Deady 03 October 2012

import os, pygame, argparse, sys

from pygame.locals import *

initialise pygame (to render the image)

pygame.init()

Define two functions that will be used:

1) fnAppend2Log will write a line to a log file

def fnAppend2Log(line2write):

logfile = open('lines.log', 'a')

logfile.write(line2write + '\n')

logfile.close()

2) fnPlotLines will render a quarter of the shape.

Uses the previous coordinates as the new starting coordinates

def fnPlotLines(quarter, sX, sY, eX, eY, incSX, incSY, incEX, incEY):

fnAppend2Log(quarter + ' quarter coordinates:')

calculate and loop through line coordinates

for i in range(0,iterations, args.step):

nSX = sX + (incSX * i) # start X

nSY = sY + (incSY * i) # start Y

nEX = eX + (incEX * i) # end X

nEY = eY + (incEY * i) # end Y

draw a line between the pair of coordinates.

pygame.draw.line(screen,(lineColour),(nSX,nSY),(nEX,nEY),1)

PYTHON VERSION: 2.7.3rc2

PYGAME VERSION: 1 .9.2a0

O.S.: Debian 7

This Pygame line renderer uses Python's argparse:
http://docs.python.org/dev/l ibrary/argparse.html
At the LXTerminal run the command:

python lines.py h

This wil l display al l arguments avai lable. For example:

python lines.py s 3 t 4

wil l generate a shape larger than the default (-s 2) and
with sl ightly denser l ines (-t 5). Experiment with the
options avai lable.

30

construct a string for the window title and the log file

coordText = '('+str(nSX)+','+str(nSY)+')

('+str(nEX)+','+str(nEY)+')'

render the image line by line (takes longer)?

if args.renderlines == 'y':

pygame.display.update();

pygame.display.set_caption(coordText)

output coordinates to the log

fnAppend2Log(coordText)

return the final calculated coordinates

return (nSX, nSY, nEX, nEY);

define the command line arguments:

parser = argparse.ArgumentParser(description='Render shape')

parser.add_argument('s', action='store', dest='scale', type=int,

default=2, help='Render size, default=2, 200x200px)')

parser.add_argument('t', action='store', dest='step', type=int,

default=5,

help='Lower step values for denser lines (default=5)')

parser.add_argument('r', action='store', dest='renderlines',

choices=('y','n'), default='y',

help='Render line by line (Y) or finished object (n)')

args = parser.parse_args()

Define the variables that will be needed

sz = 100*args.scale # size in pixels horiz x vert of a quarter image

iterations = sz +5 # number of lines to render per quarter

lineColour = 0,0,255 # the colour of the line to draw (blue)

open a pygame screen on which to render our objects

the image size is twice the object to be rendered as we render 4 quarters

screen = pygame.display.set_mode([sz*2,sz*2],0,32)

Draw the lines, quarter by quarter, returning the coordinate pairs

The starting coordinates equal the end from the last quarter rendered

sx, sy, ex, ey = fnPlotLines('Top left', sz, 0, sz, sz, 0, 1, 1, 0)

sx, sy, ex, ey = fnPlotLines('Bottom left', ex, ey, sx, sy, 1, 0, 0, 1)

sx, sy, ex, ey = fnPlotLines('Bottom right', ex, ey, sx, sy, 0, 1, 1, 0)

sx, sy, ex, ey = fnPlotLines('Top right', ex, ey, sx, sy, 1, 0, 0, 1)

if rendering each line is suppressed then display the final image

if args.renderlines == 'n':

pygame.display.update();

save the rendered image to a file

pygame.image.save(screen, 'lineimage.png')

display the result for 10 seconds

pygame.time.wait(10000)

Try adding an extra argument to optional ly disable writing to the log fi le.
This wil l improve rendering time. Hint: as well as the argument you wil l
need to add two if statements as the log is written to in two different
places within the code.

Some other ideas for command line arguments:
- let the user choose the fi lename for the output image
- specify the background and line colours from a list of defaults
(black, white,red, green, blue)
- enter a demo mode that loops the code, rendering many shapes in
random colours

31

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is

collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi

Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non

commercial purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or

responsibility for the content or opinions expressed in any of the articles included in this issue. All articles are checked and tested

before the release deadline is met but some faults may remain. The reader is responsible for all consequences, both to software and

hardware, following the implementation of any of the advice or code printed. The MagPi does not claim to own any copyright licenses

and all content of the articles are submitted with the responsibility lying with that of the article writer.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of

this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Feedback & Question Time

editor@themagpi.com

Q: Regarding the Skutter series,
you mention a robot arm can be
mounted. Could you please
specify which robot arm and
where I can get it?

Richard

A: Skutter is a longterm series,
with the first article published in
issue 1 of The MagPi. This
contains some background
information: "The robotic arm kit
called the OWI Edge is currently
available from Maplin electronics
and it uses a simple USB interface
to control it."
http://www.maplin.co.uk/robotic
armkitwithusbpcinterface
266257

Q: Is it going to be possible to
view the mag on an iPad in the
near future or am I missing the
point?

John

A: The Issuu site we use has
recently started to support
HTML5, so it should now work on
iPads and iPhones etc. You can
also download the PDF and view it
within iBooks. We are currently
working with a developer
regarding a Newsstand app.

Thank you for making a printed
edition of The MagPi available
from http://www.modmypi.com. I
always print out each issue
because I prefer to read from
paper rather than online. Imagine
my surprise to discover that the
cost is only £2.49. It almost costs
that much for me to print out 32
colour pages myself!

Ian

Q: As a new user of the
Raspberry Pi I'm very interested in
your excellent magazine. I have
had no difficulty reading your
Issues 1 to 6 on my desktop
computer that uses Linux Mint 13.
Imagine my disappointment when
I found that, of the six issues, I
can only open Issue 3 on my
Raspberry Pi. Not being familiar
with the MuPDF program that
Raspbian uses, I thought I'd better
check by installing and testing
MuPDF on my Linux Mint
machine. The result is that every
MagPi issue opens without a
problem using MuPDF on my
Linux machine. This is possibly
not your technical problem but I
thought you would want to know
that a significant and growing
number of Raspberry Pi owners
cannot read your magazine.

Lloyd

A: This problem extends to many
other PDF files. MuPDF seems to
work fine for some users but not
others. Personally I have removed
MuPDF and use xPDF instead,
which works with everything. You
can do this with the following
commands:
$ sudo apt-get remove MuPDF

$ sudo apt-get install xPDF

32

